Dry-Farming : a System of Agriculture for Countries under a Low Rainfall by John Andreas Widtsoe
page 49 of 276 (17%)
page 49 of 276 (17%)
![]() | ![]() |
|
amount, is found in humid soils to the extent of 0.21 per cent,
while in arid soils the quantity present is 0.67 per cent, or over three times as much. Phosphoric acid, another of the very important plant-foods, is present in arid soils in only slightly higher quantities than in humid soils. This explains the somewhat well-known fact that the first fertilizer ordinarily required by arid soils is some form of phosphorus: The difference in the chemical composition of arid and humid soils is perhaps shown nowhere better than in the lime content. There is nearly eleven times more lime in arid than in humid soils. Conditions of aridity favor strongly the formation of lime, and since there is very little leaching of the soil by rainfall, the lime accumulates in the soil. The presence of large quantities of lime in arid soils has a number of distinct advantages, among which the following are most important: (1) It prevents the sour condition frequently present in humid climates, where much organic material is incorporated with the soil. (2) When other conditions are favorable, it encourages bacterial life which, as is now a well-known fact, is an important factor in developing and maintaining soil fertility. (3) By somewhat subtle chemical changes it makes the relatively small percentages of other plant-foods notably phosphoric acid and potash, more available for plant growth. (4) It aids to convert rapidly organic matter into humus which represents the main portion of the nitrogen content of the soil. Of course, an excess of lime in the soil may be hurtful, though less so in arid than in humid regions. Some authors state that from 8 to |
|