Relativity : the Special and General Theory by Albert Einstein
page 53 of 124 (42%)
page 53 of 124 (42%)
![]() | ![]() |
|
expressed in the last equation of the Galileian transformation (t1 =
t) The four-dimensional mode of consideration of the "world" is natural on the theory of relativity, since according to this theory time is robbed of its independence. This is shown by the fourth equation of the Lorentz transformation: eq. 24: file eq24.gif Moreover, according to this equation the time difference Dt1 of two events with respect to K1 does not in general vanish, even when the time difference Dt1 of the same events with reference to K vanishes. Pure " space-distance " of two events with respect to K results in " time-distance " of the same events with respect to K. But the discovery of Minkowski, which was of importance for the formal development of the theory of relativity, does not lie here. It is to be found rather in the fact of his recognition that the four-dimensional space-time continuum of the theory of relativity, in its most essential formal properties, shows a pronounced relationship to the three-dimensional continuum of Euclidean geometrical space.* In order to give due prominence to this relationship, however, we must replace the usual time co-ordinate t by an imaginary magnitude eq. 25 proportional to it. Under these conditions, the natural laws satisfying the demands of the (special) theory of relativity assume mathematical forms, in which the time co-ordinate plays exactly the same role as the three space co-ordinates. Formally, these four co-ordinates correspond exactly to the three space co-ordinates in Euclidean geometry. It must be clear even to the |
|