Book-bot.com - read famous books online for free

Relativity : the Special and General Theory by Albert Einstein
page 60 of 124 (48%)
fall in exactly the same manner in a gravitational field (in vacuo),
when they start off from rest or with the same initial velocity. This
law, which holds most accurately, can be expressed in a different form
in the light of the following consideration.

According to Newton's law of motion, we have

(Force) = (inertial mass) x (acceleration),

where the "inertial mass" is a characteristic constant of the
accelerated body. If now gravitation is the cause of the acceleration,
we then have

(Force) = (gravitational mass) x (intensity of the gravitational
field),

where the "gravitational mass" is likewise a characteristic constant
for the body. From these two relations follows:

eq. 26: file eq26.gif


If now, as we find from experience, the acceleration is to be
independent of the nature and the condition of the body and always the
same for a given gravitational field, then the ratio of the
gravitational to the inertial mass must likewise be the same for all
bodies. By a suitable choice of units we can thus make this ratio
equal to unity. We then have the following law: The gravitational mass
of a body is equal to its inertial law.

DigitalOcean Referral Badge