The Golden Mean or Ratio[(1+sqrt(5))/2] by Unknown
page 9 of 123 (07%)
page 9 of 123 (07%)
|
327197652607107643153112391526077219362144346096089758726934223674331613718574
577608117751518069662104795585140130069701845007026290479492570837120175279378 554957627391245587148332010170361840521636818017341425089806160634676330850504 184585816629334093479199103685913053789482158651701181210113330006695775232786 685518078256752836149494920745837336845813691407977595925267273966423478746614 399819648081036705066005238269165055144634711116867428177319502560642951637959 659475644987891461446925936629309364804816174059808214254340525211371332408113 913579971622858101419103410460569290782498956214560041045692221416830893236662 517618696271719453854998551484275173369241202680159928083201458300754484742331 264387808478085056104304909999364345905195187494843696772757473359670883349609 157447435750398602016397666114276536952670441155200193914842934601015129531174 458876483070371677396154265591399083037577663021309908712719887069032930470124 105861506399852998141757804303480803588203202011047607004755710169423412034108 915643947825303164593730437558194686752534953230130276782353560116641311177996 099793662043449569683547930754311327558643189731515171064432189249793277801264 964764475467078165807406131259375271847408816115479818307816751047809291413954 564631160581269051753953556915775580410671981231638405277556052272223764711883 233223099585068971018717504781906533494858423259762256575841898529144717833517 322602985786292943465056366932162627673816245957417932698892327220666636081992 490988831468529940991386734446049670842442978243630232938910355965601739942201 988690257245471401633009612146187208365108688185334060622017099515827070442337 042180176696349133695996064322005328873494893135966030424380804565944743335678 31672703729636367594216999379522 ------------------------------------------------------------------------------ As calculated by Greg Fee using Maple Release 3 standard Catalan evaluation. This implementation uses 1 bit/term series of Ramanujan. Calculated on April 25 1996 in approx. 10 hours of CPU on a SGI R4000 machine. |
|