The Evolution of Man — Volume 1 by Ernst Heinrich Philipp August Haeckel
page 25 of 358 (06%)
page 25 of 358 (06%)
|
When the animal ovum (egg-cell) has been fertilised, it divides and
subdivides until we have a cluster of cohering cells, externally not unlike a raspberry or mulberry. This is the morula (= mulberry) stage. The cluster becomes hollow, or filled with fluid in the centre, all the cells rising to the surface. This is the blastula (hollow ball) stage. One half of the cluster then bends or folds in upon the other, as one might do with a thin indiarubber ball, and we get a vase-shaped body with hollow interior (the first stomach, or "primitive gut"), an open mouth (the first or "primitive mouth"), and a wall composed of two layers of cells (two "germinal layers"). This is the gastrula (stomach) stage, and the process of its formation is called gastrulation. A glance at the illustration (Figure 1.29) will make this perfectly clear. So much for the embryonic process in itself. The application to evolution has been a long and laborious task. Briefly, it was necessary to show that ALL the multicellular animals passed through these three stages, so that our biogenetic law would enable us to recognise them as reminiscences of ancestral forms. This is the work of Chapters 1.8 and 1.9. The difficulty can be realised in this way: As we reach the higher animals the ovum has to take up a large quantity of yelk, on which it may feed in developing. Think of the bird's "egg." The effect of this was to flatten the germ (the morula and blastula) from the first, and so give, at first sight, a totally different complexion to what it has in the lowest animals. When we pass the reptile and bird stage, the large yelk almost disappears (the germ now being supplied with blood by the mother), but the germ has been permanently altered in shape, and there are now a number of new embryonic processes (membranes, blood-vessel connections, etc.). Thus it was no light task to trace the identity of this process of |
|