The Evolution of Man — Volume 2 by Ernst Heinrich Philipp August Haeckel
page 46 of 417 (11%)
page 46 of 417 (11%)
![]() | ![]() |
|
end we have a sort of lattice work of fine gill-clefts, supported on a
number of stiff branchial rods; these are connected in pairs by transverse rods. (FIGURES 2.222 TO 2.224. Transverse sections of young Amphioxus-larvae (diagrammatic, from Ralph.) (Cf. also Figure 2.216.) In Figure 2.222 there is free communication from without with the gut-cavity (D) through the gill-clefts (K). In Figure 2.223 the lateral folds of the body-wall, or the gill-covers, which grow downwards, are formed. In Figure 2.224 these lateral folds have united underneath and joined their edges in the middle line of the ventral side (R seam). The respiratory water now passes from the gut-cavity (D) into the mantle-cavity (A). The letters have the same meaning throughout: N medullary tube, Ch chorda, M lateral muscles, Lh body-cavity, G part of the body-cavity in which the sexual organs are subsequently formed. D gut-cavity, clothed with the gut-gland layer (a). A mantle-cavity, K gill-clefts, b = E epidermis, E1 the same as visceral epithelium of the mantle-cavity, E2 as parietal epithelium of the mantle-cavity.) At an early stage of embryonic development the structure of the Amphioxus-larva is substantially the same as the ideal picture we have previously formed of the "Primitive Vertebrate" (Figures 1.98 to 1.102). But the body afterwards undergoes various modifications, especially in the fore-part. These modifications do not concern us, as they depend on special adaptations, and do not affect the hereditary vertebrate type. When the free-swimming Amphioxus-larva is three months old, it abandons its pelagic habits and changes into the young animal that lives in the sand. In spite of its smallness (one-eighth of an inch), it has substantially the same structure as the adult. As regards the remaining organs of the Amphioxus, we need only mention |
|