Worldwide Effects of Nuclear War: Some Perspectives by U.S. Arms Control and Disarmament Agency
page 25 of 27 (92%)
page 25 of 27 (92%)
![]() | ![]() |
|
structures like the cytoplasm, which carries the cell's genetic blueprints,
and also produces chemical constituents which can cause as much damage as the original ionizing radiation. For convenience, a unit of radiation dose called the "rad" has been adopted. It measures the amount of ionization produced per unit volume by the particles from radioactive decay. Note 4: Nuclear Half-Life The concept of "half-life" is basic to an understanding of radioactive decay of unstable nuclei. Unlike physical "systems"--bacteria, animals, men and stars--unstable isotopes do not individually have a predictable life span. There is no way of forecasting when a single unstable nucleus will decay. Nevertheless, it is possible to get around the random behavior of an individual nucleus by dealing statistically with large numbers of nuclei of a particular radioactive isotope. In the case of thorium-232, for example, radioactive decay proceeds so slowly that 14 billion years must elapse before one-half of an initial quantity decayed to a more stable configuration. Thus the half-life of this isotope is 14 billion years. After the elapse of second half-life (another 14 billion years), only one-fourth of the original quantity of thorium-232 would remain, one eighth after the third half-life, and so on. |
|