Worldwide Effects of Nuclear War: Some Perspectives by U.S. Arms Control and Disarmament Agency
page 9 of 27 (33%)
page 9 of 27 (33%)
|
RADIOACTIVE FALLOUT Both the local and worldwide fallout hazards of nuclear explosions depend on a variety of interacting factors: weapon design, explosive force, altitude and latitude of detonation, time of year, and local weather conditions. All present nuclear weapon designs require the splitting of heavy elements like uranium and plutonium. The energy released in this fission process is many millions of times greater, pound for pound, than the most energetic chemical reactions. The smaller nuclear weapon, in the low-kiloton range, may rely solely on the energy released by the fission process, as did the first bombs which devastated Hiroshima and Nagasaki in 1945. The larger yield nuclear weapons derive a substantial part of their explosive force from the fusion of heavy forms of hydrogen--deuterium and tritium. Since there is virtually no limitation on the volume of fusion materials in a weapon, and the materials are less costly than fissionable materials, the fusion, "thermonuclear," or "hydrogen" bomb brought a radical increase in the explosive power of weapons. However, the fission process is still necessary to achieve the high temperatures and pressures needed to trigger the hydrogen fusion reactions. Thus, all nuclear detonations produce radioactive fragments of heavy elements fission, with the larger bursts producing an additional radiation component from the fusion process. The nuclear fragments of heavy-element fission which are of greatest concern are those radioactive atoms (also called radionuclides) which decay by emitting energetic electrons or gamma particles. (See "Radioactivity" note.) An important characteristic here is the rate of decay. This is |
|