The Atomic Bombings of Hiroshima and Nagasaki by United States. Army. Corps of Engineers. Manhattan District
page 44 of 87 (50%)
page 44 of 87 (50%)
![]() | ![]() |
|
and finally mushrooms out at an altitude of about 25,000 feet depending
upon meteorological conditions. The cloud reaches a maximum height of between 50,000 and 70,000 feet in a time of over 30 minutes. It is of interest to note that Dr. Hans Bethe, then a member of the Manhattan Engineer District on loan from Cornell University, predicted the existence and characteristics of this ball of fire months before the first test was carried out. To summarize, radiation comes in two bursts - an extremely intense one lasting only about 3 milliseconds and a less intense one of much longer duration lasting several seconds. The second burst contains by far the larger fraction of the total light energy, more than 90%. But the first flash is especially large in ultra-violet radiation which is biologically more effective. Moreover, because the heat in this flash comes in such a short time, there is no time for any cooling to take place, and the temperature of a person's skin can be raised 50 degrees centigrade by the flash of visible and ultra-violet rays in the first millisecond at a distance of 4,000 yards. People may be injured by flash burns at even larger distances. Gamma radiation danger does not extend nearly so far and neutron radiation danger is still more limited. The high skin temperatures result from the first flash of high intensity radiation and are probably as significant for injuries as the total dosages which come mainly from the second more sustained burst of radiation. The combination of skin temperature increase plus large ultra-violet flux inside 4,000 yards is injurious in all cases to exposed personnel. Beyond this point there may be cases of injury, depending upon the individual sensitivity. The infra-red dosage is probably less important because of its smaller intensity. |
|