Species and Varieties, Their Origin by Mutation by Hugo DeVries
page 307 of 648 (47%)
page 307 of 648 (47%)
![]() | ![]() |
|
dependency on nourishment and other life conditions, and even about
hybridizing, which may be answered by this new method. Seed-leaves show many deviations from the ordinary shape, especially in dicotyledonous plants. A very common aberration is the multiplication of their number, and three seed-leaves in a whorl are not rarely met with. The whorl may even consist of four, and in rare cases of five or more cotyledons. Cleft cotyledons are also to be met with, and the fissure may extend varying distances from the tips. Often all these deviations may be seen among the seedlings of one lot, and then it is obvious that together they constitute a scale of cleavages, the ternate and quaternate whorls being only cases where the cleaving has reached its greatest development. All in all it is manifest that here we are met by one type of monstrosity, but that this type allows of a wide range of fluctuating variability. For brevity's sake all these cleft and ternate, double cleft and quaternate cotyledons and even the higher grades are combined under one common name and indicated as tricotyls. A second aberration of young seed-plants is exactly opposite to this. It consists of the union of the two seed-leaves into a single organ. This ordinarily betrays its origin by [417] having two separate apices, but not always. Such seedlings are called syncotyledonous or syncotyls. Other monstrosities have been observed from time to time, but need not be mentioned here. It is evident that the determination of the hereditary percentage is very easy in tricotylous or syncotylous cultures. The parent plants must be carefully isolated while blooming. Many species pollinate themselves in the absence of bees; from these the insects are to be excluded. Others have the stamens and stigmas widely separated and have to be |
|