$a Äther und Relativitäts-Theorie + Geometrie und Erfahrung $l Englisch;Sidelights on Relativity by Albert Einstein
page 3 of 31 (09%)
page 3 of 31 (09%)
![]() | ![]() |
|
entirely under the spell of his doctrine, mostly preferred to
take; or by assuming that the Newtonian action at a distance is only _apparently_ immediate action at a distance, but in truth is conveyed by a medium permeating space, whether by movements or by elastic deformation of this medium. Thus the endeavour toward a unified view of the nature of forces leads to the hypothesis of an ether. This hypothesis, to be sure, did not at first bring with it any advance in the theory of gravitation or in physics generally, so that it became customary to treat Newton's law of force as an axiom not further reducible. But the ether hypothesis was bound always to play some part in physical science, even if at first only a latent part. When in the first half of the nineteenth century the far-reaching similarity was revealed which subsists between the properties of light and those of elastic waves in ponderable bodies, the ether hypothesis found fresh support. It appeared beyond question that light must be interpreted as a vibratory process in an elastic, inert medium filling up universal space. It also seemed to be a necessary consequence of the fact that light is capable of polarisation that this medium, the ether, must be of the nature of a solid body, because transverse waves are not possible in a fluid, but only in a solid. Thus the physicists were bound to arrive at the theory of the "quasi-rigid" luminiferous ether, the parts of which can carry out no movements relatively to one another except the small movements of deformation which correspond to light-waves. This theory--also called the theory of the stationary luminiferous ether--moreover found a strong support in an experiment which is also of fundamental importance in the special theory of relativity, |
|