Book-bot.com - read famous books online for free

British Airships, Past, Present, and Future by George Whale
page 30 of 167 (17%)
pointed in front and rounded off aft. The car, also constructed
of the same material, was rigidly attached to the hull by a
lattice framework, and the whole hull structure was covered in
with aluminium sheeting. A 12 horse-power Daimler benzine motor
was installed in the car, driving through the medium of a belt
twin aluminium screw propellers; no rudders were supplied, the
steering being arranged by means of a steering screw placed
centrally to the ship above the top of the car. Inflation took
place at the end of 1897 by a method of pressing out air-filled
fabric cells which were previously introduced into the hull.
This operation took three and a half hours. On the day of the
first flight trials there was a fresh wind of about 17 miles per
hour. The airship ascended into the air, but, apparently, could
make little headway against the wind. During the trip the
driving-belt became disengaged from the propellers and the ship
drifted at the mercy of the wind, but sustained little damage on
landing. After being deflated, the hull began to break up under
the pressure of the wind and was completely destroyed by the
vandalism of the spectators.

In 1898 Graf F. von Zeppelin, inspired by the example of
Schwartz, and assisted by the engineers Kober and Kubler,
conceived the idea of constructing a rigid airship of
considerable dimensions. For this purpose a floating shed was
built on Lake Constance, near to Friedrichshafen. The hull was
built of aluminium lattice-work girders, and had the form of a
prism of twenty-four surfaces with arch-shaped ends. In length
it was 420 feet, with a diameter of 38 feet 6 inches, and its
capacity was 400,000 cubic feet. The longitudinal framework was
divided by a series of rings, called transverse frames, into
DigitalOcean Referral Badge