The Mastery of the Air by William J. Claxton
page 65 of 182 (35%)
page 65 of 182 (35%)
![]() | ![]() |
|
|
and the planes are very similar in construction to the bird's
wings. But here the resemblance ends: the aeroplane does not fly, nor will it ever fly, as a bird flies. If we carefully inspect the wing of a bird--say a large bird, such as the crow--we shall find it curved or arched from front to back. This curve, however, is somewhat irregular. At the front edge of the wing it is sharpest, and there is a gradual dip or slope backwards and downwards. There is a special reason for this peculiar structure, as we shall see in a later chapter. Now it is quite evident that the inventors of aeroplanes have modelled the planes of their craft on the bird's wing. Strictly speaking, the word "plane" is a misnomer when applied to the supporting structure of an aeroplane. Euclid defines a plane, or a plane surface, as one in which, any two points being taken, the straight line between them lies wholly in that surface. But the plane of a flying machine is curved, or CAMBERED, and if one point were taken on the front of the so-called plane, and another on the back, a straight line joining these two points could not possibly lie wholly on the surface. All planes are not cambered to the same extent: some have a very small curvature; in others the curve is greatly pronounced. Planes of the former type are generally fitted to racing aeroplanes, because they offer less resistance to the air than do deeply-cambered planes. Indeed, it is in the degree of camber that the various types of flying machine show their chief diversity, just as the work of certain shipmasters is known by the particular lines of the bow and stern of the vessels which |
|


