Oxy-Acetylene Welding and Cutting - Electric, Forge and Thermit Welding together with related methods - and materials used in metal working and the oxygen process - for removal of carbon by Harold P. Manly
page 10 of 185 (05%)
page 10 of 185 (05%)
|
alloy. The crucible is then heated with coal, oil or gas fires until the
iron melts, and, by absorbing the desired elements and giving up or changing its percentage of carbon, becomes steel. The molten steel is then poured from the crucible into moulds or bars for use. Crucible steel may also be made by placing crude steel in the crucibles in place of the iron. This last method gives the finest grade of metal and the crucible process in general gives the best grades of steel for mechanical use. [Illustration: Figure 2.--A Bessemer Converter] _Bessemer steel_ is made by heating iron until all the undesirable elements are burned out by air blasts which furnish the necessary oxygen. The iron is placed in a large retort called a converter, being poured, while at a melting heat, directly from the blast furnace into the converter. While the iron in the converter is molten, blasts of air are forced through the liquid, making it still hotter and burning out the impurities together with the carbon and manganese. These two elements are then restored to the iron by adding spiegeleisen (an alloy of iron, carbon and manganese). A converter holds from 5 to 25 tons of metal and requires about 20 minutes to finish a charge. This makes the cheapest steel. [Illustration: Figure 3.--An Open Hearth Furnace] _Open hearth steel_ is made by placing the molten iron in a receptacle while currents of air pass over it, this air having itself been highly heated by just passing over white hot brick (Figure. 3). Open hearth steel is considered more uniform and reliable than Bessemer, and is used for springs, bar steel, tool steel, steel plates, etc. _Aluminum_ is one of the commonest industrial metals. It is used for |
|