The Sewerage of Sea Coast Towns by Henry C. Adams
page 122 of 154 (79%)
page 122 of 154 (79%)
![]() | ![]() |
|
--say 7,575 gallons. But a flow of 15,555 gallons per minute is
required, as it varies approximately as the fifth power of the diameter, the requisite diameter will be about [*Math: \sqrt[5]{\frac{30^5 \times 15,555}{7575}] = 34.64 inches. Now assume a diameter of 40 in, and repeat the calculations. Then head necessary to produce velocity [*Math: = \frac{15,555^2}{215 \times 40^4}] = 0.044 ft, and head to overcome friction = [*Math: \frac{15,555^2 \times 2042}{240 \times 40^5}] = 20.104 ft Then 0.044 + 20.104 = 20.148, say 20.15 ft, and the true flow will therefore be about [*Math: 15,555 * \sqrt{\frac{20.42}{20.15}}] = 15,659 gallons, and the requisite diameter about [*Math: \sqrt[5]{\frac{40^5 * 15,555}{15,659}}] = 39.94 inches. When, therefore, a 30 in diameter pipe is assumed, a diameter of 34.64 in is shown to be required, and when 40 in is assumed 39.94 in is indicated. |
|