The Sewerage of Sea Coast Towns by Henry C. Adams
page 124 of 154 (80%)
page 124 of 154 (80%)
![]() | ![]() |
|
[*Math: (\frac{\pi d^2}{4})] multiplied by the velocity, therefore the velocity in feet per second = 4/(pi d^2) x 2497/60 = 2497/(15 pi d^2) and the formula then becomes 2497/(15 pi d^2) = 124 x * 3rd_root(d^2)/3rd_root(4^3*) x sqrt(1)/sqrt(300) or d^2 x 3rd_root(d^2) = 3rd_root(d^6) = (2497 x 3rd_root(16) x sqrt(300)) / (124 x 15 x 3.14159*) or (8 x log d)/3 = log 2497 + (1/3 x log 16) + (* x log 300) - log 124 - log 15 - log 3.14159; or log d = 3/8 (3.397419 + 0.401373 + 1.238561 - 2.093422 - 1.176091 - 0.497150) = 3/8 (1.270690) = 0.476509. * d = 2.9958* feet = 35.9496, say 36 inches. As it happens, this could have been obtained direct from the tables where the discharge of a 36 in pipe at a gradient of 1 in 300 = 2,506 cubic feet per minute, as against 2,497 cubic feet required, but the above shows the method of working when the figures in the tables do not agree with those relating to the particular case in hand. This result differs somewhat from the one previously obtained, but there remains a third method, which we can now make trial |
|