The Sewerage of Sea Coast Towns by Henry C. Adams
page 6 of 154 (03%)
page 6 of 154 (03%)
|
diameter of the earth. The result of this is that the
centrifugal force overbalances the centripetal force, and the water tends to fly off, forming an anti-lunar wave crest at that point approximately equal, and opposite, to the wave crest at the point nearest to the moon. As the earth revolves, the crest of high water of the lunar tide remains opposite the centre of attraction of the sun and moon, so that a point on the surface will be carried from high water towards and past the trough of the wave, or low water, then past the crest of the anti-lunar tide, or high water again, and back to its original position under the moon. But while the earth is revolving the moon has traveled 13 degrees along the elliptical orbit in which she revolves around the earth, from west to east, once in 27 days 7 hr. 43 min, so that the earth has to make a fraction over a complete revolution before the same point is brought under the centre of attraction again This occupies on an average 52 min, so that, although we are taught that the tide regularly ebbs and flows twice in twenty-four hours, it will be seen that the tidal day averages 24 hr. 52 min, the high water of each tide in the Southern Ocean being at 12 hr. 26 min intervals. As a matter of fact, the tidal day varies from 24 hr. 35 min at new and full moon to 25 hr. 25 min at the quarters. Although the moon revolves around the earth in approximately 27-1/3 days, the earth has moved 27 degrees on its elliptical orbit around the sun, which it completes once in 365+ days, so that the period which elapses before the moon again occupies the same relative position to the sun is 29 days 12 hr. 43 min, which is the time occupied by the moon in completing her phases, and is known as a lunar month or a lunation. |
|