The Sewerage of Sea Coast Towns by Henry C. Adams
page 9 of 154 (05%)
page 9 of 154 (05%)
|
water over the face of the globe and the position and declivity
of the shores greatly modify the movements of the tides and give rise to so many complications that no general formulae can be used to give the time or height of the tides at any place by calculation alone. The average rate of travel and the course of the flood tide of the derivative waves around the shores of Great Britain are as follows:--150 miles per hour from Land's End to Lundy Island; 90 miles per hour from Lundy to St. David's Head; 22 miles per hour from St. David's Head to Holy head; 45-1/2 miles per hour from Holyhead to Solway Firth; 194 miles per hour from the North of Ireland to the North of Scotland; 52 miles per hour from the North of Scotland to the Wash; 20 miles per hour from the Wash to Yarmouth; 10 miles per hour from Yarmouth to Harwich. Along the south coast from Land's End to Beachy Head the average velocity is 40 miles per hour, the rate reducing as the wave approaches Dover, in the vicinity of which the tidal waves from the two different directions meet, one arriving approximately twelve hours later than the other, thus forming tides which are a result of the amalgamation of the two waves. On the ebb tide the direction of the waves is reversed. The mobility of the water around the earth causes it to be very sensitive to the varying attraction of the sun and moon, due to the alterations from time to time in the relative positions of the three bodies. Fig. [Footnote: Plate I] shows diagrammatically the condition of the water in the Southern Ocean when the sun and moon are in the positions occupied at the time of new moon. The tide at A is due to the sum of the attractions of the sun and moon less the effect due to the |
|