Acetylene, the Principles of Its Generation and Use by F. H. Leeds;W. J. Atkinson Butterfield
page 53 of 592 (08%)
page 53 of 592 (08%)
![]() | ![]() |
|
will be immediately explained, when the output of gas is measured in
terms of the water decomposed, in no commercial apparatus, and indeed in no generator which can be imagined fit for actual employment, does that output of gas ever approach the quantitative amount; but the volume of water used, if not actually disappearing, is always vastly in excess of the requirements of equation (2). On the contrary, when the make of gas is measured in terms of the calcium carbide consumed, the said make may, and frequently does, reach 80, 90, or even 99 per cent. of what is theoretically possible. Inasmuch as calcium carbide is the one costly ingredient in the manufacture of acetylene, so long as it is not wasted-- so long, that is to say, as nearly the theoretical yield of gas is obtained from it--an acetylene generator is satisfactory or efficient in this particular; and except for the matter of solubility discussed in the following chapter, the quantity of water consumed is of no importance whatever. HEAT EVOLVED IN THE REACTION.--The chemical reaction between calcium carbide and water is accompanied by a large evolution of heat, which, unless due precautions are taken to prevent it, raises the temperature of the substances employed, and of the apparatus containing them, to a serious and often inconvenient extent. This phenomenon is the most important of all in connexion with acetylene manufacture; for upon a proper recognition of it, and upon the character of the precautions taken to avoid its numerous evil effects, depend the actual value and capacity for smooth working of any acetylene generator. Just as, by an immutable law of chemistry, a given weight of calcium carbide yields a given weight of acetylene, and by no amount of ingenuity can be made to produce either more or less; so, by an equally immutable law of physics, the decomposition of a given weight of calcium carbide by water, or the decomposition of a given weight of water by calcium carbide, yields a |
|