Acetylene, the Principles of Its Generation and Use by F. H. Leeds;W. J. Atkinson Butterfield
page 64 of 592 (10%)
page 64 of 592 (10%)
![]() | ![]() |
|
by the quotient obtained on dividing the specific heat of water by the
specific heat of the substance considered: which quotient, obviously, is the "reciprocal" of the specific heat of the said substance. The analogy to the combustion of coal mentioned on a previous page shows that although the quantity of heat evolved during a certain chemical reaction is strictly fixed, the temperature attained is dependent on the time over which the reaction is spread, being higher as the process is more rapid. This is due to the fact that throughout the whole period of reaction heat is escaping from the mass, and passing into the atmosphere at a fairly constant speed; so that, clearly, the more slowly heat is produced, the better opportunity has it to pass away, and the less of it is left to collect in the material under consideration. During the action of an acetylene generator, there is a current of gas constantly travelling away from the carbide, there is vapour of water constantly escaping with the gas, there are the walls of the generator itself constantly exposed to the cooling action of the atmosphere, and there is either a mass of calcium carbide or of water within the generator. It is essential for good working that the temperature of both the acetylene and the carbide shall be prevented from rising to any noteworthy extent; while the amount of heat capable of being dissipated into the air through the walls of the apparatus in a given time is narrowly limited, depending upon the size and shape of the generator, and the temperature of the surrounding air. If, then, a small, suitably designed generator is working quite slowly, the loss of heat through the external walls of the apparatus may easily be rapid enough to prevent the internal temperature from rising objectionably high; but the larger the generator, and the more rapidly it is evolving gas, the less does this become possible. Since of the substances in or about a generator water is the one which has by far the largest capacity for absorbing heat, and since it is the |
|