History of Astronomy by George Forbes
page 126 of 164 (76%)
page 126 of 164 (76%)
![]() | ![]() |
|
the heavenly bodies, there was a great desire to find out what comets
are made of. The first opportunity came in 1864, when Donati observed the spectrum of a comet, and saw three bright bands, thus proving that it was a gas and at least partly self-luminous. In 1868 Huggins compared the spectrum of Winnecke's comet with that of a Geissler tube containing olefiant gas, and found exact agreement. Nearly all comets have shown the same spectrum.[1] A very few comets have given bright band spectra differing from the normal type. Also a certain kind of continuous spectrum, as well as reflected solar light showing Frauenhofer lines, have been seen. [Illustration: COPY OF THE DRAWING MADE BY PAUL FABRICIUS. To define the path of comet 1556. After being lost for 300 years, this drawing was recovered by the prolonged efforts of Mr. Hind and Professor Littrow in 1856.] When Wells's comet, in 1882, approached very close indeed to the sun, the spectrum changed to a mono-chromatic yellow colour, due to sodium. For a full account of the wonders of the cometary world the reader is referred to books on descriptive astronomy, or to monographs on comets.[2] Nor can the very uncertain speculations about the structure of comets' tails be given here. A new explanation has been proposed almost every time that a great discovery has been made in the theory of light, heat, chemistry, or electricity. Halley's comet remained the only one of which a prediction of the return had been confirmed, until the orbit of the small, ill-defined comet found by Pons in 1819 was computed by Encke, and found to have a period of 3 1/3 years. It was predicted to return in 1822, and was |
|