History of Astronomy by George Forbes
page 24 of 164 (14%)
page 24 of 164 (14%)
|
He proceeded in the same way to compute Lunar tables. Making use of
Chaldaean eclipses, he was able to get an accurate value of the moon's mean motion. [Halley, in 1693, compared this value with his own measurements, and so discovered the acceleration of the moon's mean motion. This was conclusively established, but could not be explained by the Newtonian theory for quite a long time.] He determined the plane of the moon's orbit and its inclination to the ecliptic. The motion of this plane round the pole of the ecliptic once in eighteen years complicated the problem. He located the moon's excentric as he had done the sun's. He also discovered some of the minor irregularities of the moon's motion, due, as Newton's theory proves, to the disturbing action of the sun's attraction. In the year 134 B.C. Hipparchus observed a new star. This upset every notion about the permanence of the fixed stars. He then set to work to catalogue all the principal stars so as to know if any others appeared or disappeared. Here his experiences resembled those of several later astronomers, who, when in search of some special object, have been rewarded by a discovery in a totally different direction. On comparing his star positions with those of Timocharis and Aristillus he found no stars that had appeared or disappeared in the interval of 150 years; but he found that all the stars seemed to have changed their places with reference to that point in the heavens where the ecliptic is 90 degrees from the poles of the earth--i.e., the equinox. He found that this could be explained by a motion of the equinox in the direction of the apparent diurnal motion of the stars. This discovery of _precession of the equinoxes_, which takes place at the rate of 52".1 every year, was necessary for the progress of accurate astronomical observations. It is due to a steady revolution of the earth's pole round the pole of the ecliptic once in 26,000 years in the opposite |
|