History of Astronomy by George Forbes
page 47 of 164 (28%)
page 47 of 164 (28%)
|
propositions, contrast strongly with the loose and imperfectly
supported explanations of all his predecessors; and the indulgent reader will excuse the devotion of a few lines to an example of the ingenuity and beauty of his methods. It may seem a hopeless task to find out the true paths of Mars and the earth (at that time when their shape even was not known) from the observations giving only the relative direction from night to night. Now, Kepler had twenty years of observations of Mars to deal with. This enabled him to use a new method, to find the earth's orbit. Observe the date at any time when Mars is in opposition. The earth's position E at that date gives the longitude of Mars M. His period is 687 days. Now choose dates before and after the principal date at intervals of 687 days and its multiples. Mars is in each case in the same position. Now for any date when Mars is at M and the earth at E3 the date of the year gives the angle E3SM. And the observation of Tycho gives the direction of Mars compared with the sun, SE3M. So all the angles of the triangle SEM in any of these positions of E are known, and also the ratios of SE1, SE2, SE3, SE4 to SM and to each other. For the orbit of Mars observations were chosen at intervals of a year, when the earth was always in the same place. [Illustration] But Kepler saw much farther than the geometrical facts. He realised that the orbits are followed owing to a force directed to the sun; and he guessed that this is the same force as the gravity that makes a stone fall. He saw the difficulty of gravitation acting through the |
|