History of Astronomy by George Forbes
page 57 of 164 (34%)
page 57 of 164 (34%)
![]() | ![]() |
|
attraction for both of them follow the same law as to distance as is
given by the planetary motions round the sun? It has been stated that in this way the first conception of universal gravitation arose.[1] Quite the most important event in the whole history of physical astronomy was the publication, in 1687, of Newton's _Principia (Philosophiae Naturalis Principia Mathematica)_. In this great work Newton started from the beginning of things, the laws of motion, and carried his argument, step by step, into every branch of physical astronomy; giving the physical meaning of Kepler's three laws, and explaining, or indicating the explanation of, all the known heavenly motions and their irregularities; showing that all of these were included in his simple statement about the law of universal gravitation; and proceeding to deduce from that law new irregularities in the motions of the moon which had never been noticed, and to discover the oblate figure of the earth and the cause of the tides. These investigations occupied the best part of his life; but he wrote the whole of his great book in fifteen months. Having developed and enunciated the true laws of motion, he was able to show that Kepler's second law (that equal areas are described by the line from the planet to the sun in equal times) was only another way of saying that the centripetal force on a planet is always directed to the sun. Also that Kepler's first law (elliptic orbits with the sun in one focus) was only another way of saying that the force urging a planet to the sun varies inversely as the square of the distance. Also (if these two be granted) it follows that Kepler's third law is only another way of saying that the sun's force on different planets (besides depending as above on distance) is proportional to their masses. |
|