Scientific American Supplement, No. 275, April 9, 1881 by Various
page 17 of 159 (10%)
page 17 of 159 (10%)
![]() | ![]() |
|
original weight. As regards the remains of the other segments, they have
no influence on this phenomenon, for the coating Nos. 2, 3, 4, and 5, separated by the water and friction, have no action whatever on the diluted starch. Besides its action through its presence, which is immediate, the embryous membrane may also act as a ferment, active only after a development, varying in duration according to the conditions of temperature and the presence or absence of ferments in acting. I make a distinction here as is seen, between the action through being present, and the action of real ferments, but it is not my intention to approve or disapprove of the different opinions expressed on this subject. I make use of these expressions only to explain more clearly the phenomena I have to speak of, for it is our duty to bear in mind that the real ferments only act after a longer or shorter period of development, while, on the other hand, the effects through presence are immediate. I now return to the embryous membrane. Various causes increase or decrease the action of this tissue, but it may be said in general that all the agents that kill the embryous membrane will also kill the cerealine. This was the reason why I at first attributed the production of dark bread exclusively to the latter ferment, but it was easy to observe that during the baking, decompositions resulted at over 158 deg. Fah., while the cerealine was still coagulated, and that bread containing bran, submitted to 212 deg. of heat, became liquefied in water at 104 deg.. It was now easy to determine that dark flours, from which the cerealine had been removed by repeated washings, still produced dark bread. It was at this time, in remembering my experiences with organic bodies, I determined the properties of the insoluble tissue, deprived of the soluble cerealine, with analogous properties, but distinguished not alone by its solid organization and state of insolubility, but also by its resistance to heat, which acts as on |
|