Scientific American Supplement, No. 288, July 9, 1881 by Various
page 123 of 160 (76%)
page 123 of 160 (76%)
![]() | ![]() |
|
|
pressed against a strip of wood or metal dipping into the water. If the
strip is connected with a much larger wooden or metallic surface in the water the sound is heard much more distinctly. Now, the sides of a ship form a very large collecting surface, and at the distance of several miles from such a water siren as might be constructed, we feel quite sure that, above the noise of engines and flapping sails, above the far more troublesome noise of waves striking the ship's side, the musical note of the distant siren would be heard, giving warning of a dangerous neighborhood. In considering this problem, you must remember that Messrs. Colladon and Sturn heard distinctly the sound of a bell struck underwater at the distance of nearly nine miles, the sound being communicated by the water of Lake Geneva." The next portion of the lecture discussed the great value of a rapid recurrence of effects, the obtaining of sound by means of a rapid intermission of light rays on selenium joined up in an electric circuit being instanced as an example. Then recent experiments on the refractive power of ebonite were detailed--the rough results tending to give greater weight to Clerk-Maxwell's electro-magnetic theory of light. The index of refraction of ebonite was found by Profs. Ayrton and Perry to be roughly 1.7. Clerk-Maxwell's theory requires that the square of this number should be equal to the electric specific inductive capacity of the substance. For ebonite this electric constant varies from 2.2 to 3.5 for different specimens, the mean of which is almost exactly equal to the square of 1.7. * * * * * |
|


