Scientific American Supplement, No. 288, July 9, 1881 by Various
page 140 of 160 (87%)
page 140 of 160 (87%)
![]() | ![]() |
|
|
platinum, carbontype, and the numerous other types which are springing
up in all directions for future consideration. Now, in an ordinary pencil, pen and ink, or sepia sketch we have a deposit of a dark, non-reflecting substance, which gives the outline of a figure on a lighter background. The different gradations of shade are acquired by a more or less deposit of lead, ink, or sepia. In photography--at least in the ordinary silver process--the image is formed by a deposition of metallic silver or organic oxide in a minute state of division, either on glass, paper, or other suitable material. This is brought about by the action of light and certain reagents. Light has long been recognized as a motive power comparable with heat or electricity. Its action upon the skin, fading of colors, and effect on the growth of vegetable and animal organisms are well known; and, although the exact molecular change in many instances is not clearly understood, yet certain salts of silver, iron, the alkaline bichromates, and some organic materials--as bitumen and gelatine--have been pretty well worked out. It is a remarkable and well-known fact that the chloride, iodide, and bromide of silver--called "sensitive salts" in photography--are not susceptible (at least only slowly) to change when exposed to the yellow, orange, and red rays. The longer wave lengths of the spectrum, as you know, form, with violet, indigo, blue, and green, white light. The diagram on the wall shows this dispersion and separation of the primitive colors. These--the yellow, orange, and red-- are called technically "non actinic" rays, and the others in their order become more actinic until the ultra violet is reached. The action of white light, or rays, excluding yellow, orange, and red, has the effect of converting silver chloride into a sub-chloride; it drives off one |
|


