Hormones and Heredity by J. T. Cunningham
page 108 of 228 (47%)
page 108 of 228 (47%)
![]() | ![]() |
|
|
T. H. Morgan [Footnote: _A Critique of the Theory of Evolution._] has observed a number of cases of sex-linked inheritance in the mutations which occurred in his cultures of _Drosophila_. The eye of the wild original fly is red, one of the mutants has a white eye, _i.e._ the red colour and its factor are absent. When a white-eyed male is mated to a red-eyed female all the offspring have red eyes. If these are bred _inter se_, there are, as in ordinary Mendelian cases, three red-eyed to one white-eyed in the _F2_ generation, but white eyes occur only in the males, in other wards half the males are white-eyed. On the other hand, when a white-eyed _female_ is mated to a red-eyed male all the daughters have red eyes, and all the sons white eyes. This has been termed crisscross inheritance. If these are bred together the result in _F2_ is equal numbers of red-eyed and white-eyed females, and equal numbers of red-eyed and white-eyed males. The ration of dominant to recessive is 2 to 2 instead of the usual Mendelian ration of 3 to 1. According to Morgan the interpretation is as follows: In the nucleus of the female gametocytes there are two _X_ chromosomes related to sex, in those of the male there is one _X_ chromosome and one _Y_ chromosome of slightly different shape. The factor for red eye occurs in the sex-chromosomes, that is to say, according to this theory, the sex-chromosome does not merely determine sex but carries other factors as well, and this fact is the explanation of sex-linked inheritance. The factor for red eye then is present in both _X_ chromosomes of the wild female, absent from both _X_ and _Y_ chromosomes of the white-eyed male. The gametes of the female each carry one _X_ red chromosome, of those of the male half carry an _X_ white chromosome, and half the _Y_ white chromosome. The fertilised female ova therefore carry an _X_ red chromosome + an _X_ white chromosome, the male producing ova one _X_ red |
|


