Hormones and Heredity by J. T. Cunningham
page 65 of 228 (28%)
page 65 of 228 (28%)
![]() | ![]() |
|
|
chromosome. The fertilisations are thus XX which develops into a female
fly, and XY which develops into a male. Drosophila therefore is an example of one of the cases described by Wilson. Dr. Wilson (_loc. cit._) discusses the question of how we are to interpret these facts, in particular, the fact that the X chromosome in fertilisation gives rise to females. He remarks that the X chromosome must be a male-determining factor since in many cases it is the only sex-chromosome in the males, yet its introduction into the egg establishes the _female_ condition. This is the same difficulty which I pointed out above in connection with the Mendelian theory that the female was heterozygous and the male homozygous for sex. Dr. Wilson points out that in the bee, where fertilised eggs develop into females and unfertilised into males, we should have to assume that the _X_ chromosome in the female gamete is a female determiner which meets a recessive male determiner in the _X_ chromosomes of the sperm. When reduction occurs, the _X_[female] must be eliminated since the reduced egg develops always into a male. But on fertilisation, since the fertilised egg develops into a female, a dominant _X_[female] must come from the sperm, so that our first assumption contradicts itself. Dr. Wilson, T. H. Morgan, and Richard Hartwig have therefore suggested that the sex-difference as regards gametes is not a qualitative but a quantitative one. In certain cases there is no evident quantitative difference of chromatin as a whole, but there may in all cases be a difference in the quantity of special sex-chromatin contained in the _X_ element. The theory put forward by Wilson then is that a single _X_ element means _per se_ the male condition, while the addition of a second element of the same kind produces the female condition. Such a theory might apply even to cases where no sex-chromosomes can be distinguished by |
|


