Scientific American Supplement, No. 360, November 25, 1882 by Various
page 16 of 144 (11%)
page 16 of 144 (11%)
|
In the same connection the _form_ of engine to be used must be considered. In some few cases--as, for instance, where engines have to be placed in confined situations--the form is practically fixed by the space available, it being perhaps possible only to erect a vertical or a horizontal engine, as the case may be. These, however, are exceptional instances, and in most cases--at all events where large powers are required--the engineer may have a free choice in the matter. Under these circumstances the best form, in the vast majority of cases where machinery must be driven, is undoubtedly the horizontal engine, and the worst the beam engine. When properly constructed, the horizontal engine is more durable than the beam engine, while, its first cost being less, it can be driven at a higher speed, and it involves a much smaller outlay for engine house and foundations than the latter. In many respects the horizontal engine is undoubtedly closely approached in advantages by the best forms of vertical engines; but on the whole we consider that where machinery is to be driven the balance of advantages is decidedly in favor of the former class, and particularly so in the case of large powers. The next point to be decided is, whether a condensing or non-condensing engine should be employed. In settling this question not only the respective first costs of the two classes of engines must be taken into consideration, but also the cost of water and fuel. Excepting, perhaps, in cases of very small powers, and in those instances where the exhaust steam from a non-condensing engine can be turned to good account for heating or drying purpose, it may safely be asserted that in all instances where a sufficient supply of condensing water is available at a moderate cost, the extra economy of a well-constructed condensing engine will fully warrant the additional outlay involved in its |
|