Scientific American Supplement, No. 362, December 9, 1882 by Various
page 83 of 140 (59%)
page 83 of 140 (59%)
![]() | ![]() |
|
of 90 per cent. of copper and 10 per cent. of aluminum. Like iron, it
does not amalgamate directly with mercury, nor is it readily alloyed with lead, but many alloys with other metals, as copper, iron, gold, etc., have been made with it and found to be valuable combinations. One part of it to 100 parts of gold gives a hard, malleable alloy of a greenish gold color, and an alloy of 3/4 iron and 1/4 aluminum does not oxidize when exposed to a moist atmosphere. It has also been used to form a metallic coating upon other metals, as copper, brass, and German silver, by the electro-galvanic process. Copper has also been deposited, by the same process, upon aluminum plates to facilitate their being rolled very thin; for unless the metal be pure, it requires to be annealed at each passage through the rolls, and it is found that its flexibility is greatly increased by rolling. To avoid the bluish white appearance, like zinc, Dr. Stevenson McAdam recommends immersing the article made from aluminum in a heated solution of potash, which will give a beautiful white frosted appearance, like that of frosted silver. F.W. Gerhard obtained a patent in 1856, in England, for an improved means of obtaining aluminum metal, and the adaptation thereof to the manufacture of certain useful articles. Powdered fluoride of aluminum is placed alone or in combination with other fluorides in a closed furnace, heated to a red heat, and exposed to the action of hydrogen gas, which is used as a reagent in the place of sodium. A reverberating furnace is used by preference. The fluoride of aluminum is placed in shallow trays or dishes, each dish being surrounded by clean iron filings placed in suitable receptacles; dry hydrogen gas is forced in, and suitable entry and exit pipes and stop-cocks are provided. The hydrogen gas, combining with the fluoride, "forms hydrofluoric acid, which is taken up by the iron and is thereby converted into fluoride of iron." The resulting aluminum "remains in a metallic state in the bottom of the trays |
|