Book-bot.com - read famous books online for free

Scientific American Supplement, No. 401, September 8, 1883 by Various
page 31 of 136 (22%)
pump, P, is set rapidly in operation, and, as a consequence, draws up
the chloride of sodium from the bottom of the vessel, C, to the lower
part of the electrolyzer, A. The hypochlorite that has formed passes
through the tube, D (as a natural consequence of the elevation of the
level of the liquid in A brought about by the entrance of a new supply
of chloride), and distributes itself throughout the vessel, C, where it
acts upon the textile material.

[Illustration: APPARATUS FOR BLEACHING TEXTILE FIBERS BY ELECTRICITY.]

The safety-tube, T, which is attached to the electrolyzer, permits
of the escape of the hydrogen which is produced during the chemical
reaction, and fixes, through an alkaline solution contained in the
reservoir, B, the chloride whose escape might discommode the operator.

As may be conceived, the slow transfer of the saline solution from
the receptacle, C, to the electrolyzer, and its rapid conversion into
decolorizing chloride, as well as its prompt application upon the
materials to be bleached, presents important advantages.

While, in the present state of the industries that make use of bleaching
chlorides, the chloride of sodium is converted into hydrochloric acid,
which, in order to disengage chlorine, must in its turn react upon
binoxide of manganese, we shall be able, with this new method, to
utilize the chloride of sodium, which is derived from ordinary salt
works, and extract from it the constituent elements of the hypochlorite
by a simple displacement of molecules produced under the influence of an
electric current.

Another and very serious advantage of electric bleaching is that of
DigitalOcean Referral Badge