Scientific American Supplement, No. 392, July 7, 1883 by Various
page 13 of 147 (08%)
page 13 of 147 (08%)
![]() | ![]() |
|
iron and steel retain previous magnetizations, and an apparent external
neutrality would in most cases be the superposition of one magnetism upon another of equal external force in the opposite direction, as shown at B, Fig. 1. Perfectly soft iron we can easily free, by vibrations, from the slightest trace of previous magnetism, and study the neutrality produced under varying conditions. [Illustration: FIG. 1.] If we take a flat bar of soft iron, of 30 or more centimeters in length, and hold it vertically (giving while thus held a few torsions, vibrations, or, better still, a few slight blows with a wooden mallet, in order to allow its molecules to rotate with perfect freedom), we find its lower end to be of strong north polarity, and its upper end south. On reversing the rod and repeating the vibrations, we find that its lower end has precisely a similar north polarity. Thus the iron is homogeneous, and its polarity symmetrical. If we now magnetize this rod to produce a strong south pole at its lower portion, we can gradually reverse this polarity, by the influence of earth's magnetism, by slightly tapping the upper extremity with a small wooden mallet. If we observe this rod by means of a direction needle at all parts, and successively during its gradual passage from one polarity to the other, there will be no sudden break into a haphazard arrangement, but a gradual and perfectly symmetrical rotation from one direction to that of the opposite polarity. If this rod is placed east and west, having first, say, a north polarity to the right, we can gradually discharge or rotate the molecules to zero, and as gradually reverse the polarity by simply inclining the rod so as to be slightly influenced by earth's magnetism; and at no portion |
|