Scientific American Supplement, No. 392, July 7, 1883 by Various
page 15 of 147 (10%)
page 15 of 147 (10%)
![]() | ![]() |
|
perpendicular to an electric current; and we should expect that, if the
molecules of an iron wire possessed inherent polarity and could rotate, a similar effect would take place in the interior of the wire to that observed by Oersted. Wiedermann first remarked this effect, and it has been known as circular magnetism. This circle, however, consists really in each molecule having placed itself perpendicular to the current, simply obeying Oersted's law, and thus forming a complete circle in which the mutual attractions of the molecules forming that circle are satisfied, as shown as C, Fig. 1. This wire becomes completely neutral, any previous symmetrical arrangement of polarity rotating to form its complete circle of attractions; and we can thus form in hard iron and steel a neutrality extremely difficult to break up or destroy. We have evident proof that this neutrality consists of a closed chain, or circle, as by torsion we can partially deflect them on either side; thus from a perfect externally neutral wire, producing either polarity, by simple mechanical angular displacement of the molecules, as by right or left handed torsion. If we magnetize a wire placed east and west, it will retain this polarity until freed by vibrations, as already remarked. If we pass an electric current through this magnetized wire, we can notice the gradual rotation of the molecules, and the formation of the circular neutrality. If we commence with a weak current, gradually increasing its strength, we can rotate them as slowly as may be desired. There is no sudden break or haphazard moment of neutrality: the movements to perfect zero are accomplished with perfect symmetry throughout. We can produce a more perfect and shorter circle of attractions by the superposition of magnetism, as at B, Fig. 1. If we magnetize a piece of steel or iron in a given direction with a strong magnetic directing |
|