Scientific American Supplement, No. 385, May 19, 1883 by Various
page 112 of 130 (86%)
page 112 of 130 (86%)
![]() | ![]() |
|
determination both of the rate of flow of the fluid and of its chemical
composition, especially at such a stage of the tree's life. A bottle was at once so suspended beneath the wound as to catch the whole of the exuding sap. It caught nearly 5 fluid ounces between eight and nine o'clock. During the succeeding eleven hours of the night 44 fluid ounces were collected, an average of 4 ounces per hour. From 8:15 to 9:15 this morning, very nearly 7 ounces were obtained. From 9:15 to 10:15, with bright sunshine, 8 ounces. From 10:15 until 8:15 this evening the hourly record kept by my son Harvey shows that the amount during that time has slowly diminished from 8 to a little below 7 ounces per hour. Apparently the flow is faster in sunshine than in shade, and by day than by night. It would seem, therefore, that this slender tree, with a stem which at the ground is only 7 inches in diameter, having a height of 39 feet, and before it has any expanded leaves from whose united surfaces large amounts of water might evaporate, is able to draw from the ground about 4 liters, or seven-eighths of a gallon of fluid every twenty-four hours. That at all events was the amount flowing from this open tap in its water system. Even the topmost branches of the tree had not become, during the fifteen days, abnormally flaccid, so that, apparently, no drainage of fluid from the upper portion of the tree had been taking place. For a fortnight the tree apparently had been drawing, pumping, sucking--I know not what word to use--nearly a gallon of fluid daily from the soil in the neigborhood of its roots. This soil had only an ordinary degree of dampness. It was not wet, still less was there any actually fluid water to be seen. Indeed, usually all the adjacent soil is of a dry kind, for we are on the plateau of a hill 265 feet above the sea, and the level of the local water reservoir into which our wells dip |
|