Scientific American Supplement, No. 385, May 19, 1883 by Various
page 30 of 130 (23%)
page 30 of 130 (23%)
|
The annexed diagram (Fig. 1) shows the form that calculation has led Mr. Pictet to. The sides of the boat are two planes parallel with its axis, and perfectly vertical. The keel (properly so called) is formed by the joining of the two vertical planes. The surface thus formed is a parabola whose apex is in front, the maximum ordinate behind, and the concavity directed toward the bottom of the water. The stern is a vertical plane intersecting at right angles the two lateral faces and the parabolic curve, which thus terminates in a sharp edge. The prow of the boat is connected with the apex of the parabola by a curve whose concavity is directed upward. [Illustration: Fig. 4.--Diagram of the variations in the power as a function of the speed.] When we trace the curve of the tractive stresses in a boat thus constructed, by putting the speeds in abscisses and the tractive stresses in ordinates, we obtain a curve (Fig. 2) which shows that the same tractive stress applied to a boat may give it three different speeds, M, M', and M'', only two of which, M and M'', are stable. Experimental verifications of this study have been partially realized (thanks to the financial aid of a number of persons who are interested in the question) through the construction of a boat (Fig. 1) by the Geneva Society for the Construction of Physical Instruments. The vessel is 20.25 m. in length at the water line, has an everywhere equal width of 3.9 m., and a length of 16 m. from the stern to the apex of the parabola of the keel. The bottom of the boat is nearly absolutely flat. The keel, which is 30 centimeters in width, contains the shaft of the screw. The boiler, which is designed for running at twelve atmospheres, |
|