Scientific American, Volume 22, No. 1, January 1, 1870 - A Weekly Journal of Practical Information, Art, Science, Mechanics, Chemistry, and Manufactures. by Various
page 37 of 309 (11%)
page 37 of 309 (11%)
|
when the same vessel was clothed with an equal thickness of raw silk,
water at the same heat and under the same process required 1,264 seconds before it reached the same decrease of temperature. It was also found by Sir Humphry Davy that even metals became non-conductors when their cohesion was destroyed by reducing them to the gaseous state. It is now generally admitted that, heat being motion, anything, which, by the cohesion of particles, preserves the continuity of the molecular chain along which the motion is conveyed, must augment calorific transmission. On the other hand, when there is a division or disintegration of atoms, such as exists in sawdust, powdered charcoal, furs, and felt, the particles composing such bodies are separated from each other by spaces of air, which the instructed among us well know are good non-conductors of heat. The motion has, therefore, to pass from each particle of matter to the air, and again from the air to the particle adjacent to it. Hence, it will be readily seen, that in substances composed of separate or divided particles, the thermal bridge, so to speak, is broken, and the passage of heat is obstructed by innumerable barriers of confined air. The correctness of these assumptions has been so abundantly proved by experimental demonstrations, that every mind that is tolerably informed on the subject must be relieved of every shade of doubt respecting the greatly superior non-conducting powers which bodies consisting of separate atoms possess over those of a solid concrete nature. The next matter of interest connected with the subject under notice is its relation to the philosophy of radiation. It has long been known that the emission of heat from a polished metallic surface is very slight, but from a surface of porcelain, paper, or charcoal, heat is discharged profusely. Even many of the best non-conductors are powerful radiators, |
|