Flying Machines: construction and operation; a practical book which shows, in illustrations, working plans and text, how to build and navigate the modern airship by William James Jackman;Thomas Herbert Russell;Octave Chanute
page 55 of 237 (23%)
page 55 of 237 (23%)
![]() | ![]() |
|
July 25th, 1909, the Frenchman was carried in a
monoplane 24 1/2 feet in spread, and with a total sustaining surface of 150 1/2 square feet. The total weight of the outfit, including machine, operator and fuel sufficient for a three-hour run, was only 660 pounds. With an engine of (nominally) 25 horsepower the distance of 21 miles was covered in 37 minutes. Which is the Best? Right here an established mathematical quantity is involved. A small plane surface offers less resistance to the air than a large one and consequently can attain a higher rate of speed. As explained further on in this chapter speed is an important factor in the matter of weight-sustaining capacity. A machine that travels one- third faster than another can get along with one-half the surface area of the latter without affecting the load. See the closing paragraph of this chapter on this point. In theory the construction is also the simplest, but this is not always found to be so in practice. The designing and carrying into execution of plans for an extensive area like that of a monoplane involves great skill and cleverness in getting a framework that will be strong enough to furnish the requisite support without an undue excess of weight. This proposition is greatly simplified in the biplane and, while the speed attained by the latter may not be quite so great as that of the monoplane, it has much larger weight-carrying capacity. |
|