Scientific American Supplement, No. 433, April 19, 1884 by Various
page 45 of 129 (34%)
page 45 of 129 (34%)
![]() | ![]() |
|
prevented it from coming into direct contact with heat of a dangerous
and damaging degree. The same heat which is used to dry one floor, and in an ordinary kiln passes at once into the air as waste, is the best possible description of heat, namely, very slightly moistened heated air, to remove the moisture from the second layer of malt at a low temperature. It is of vital importance to retain this green malt at a low heat so long as any percentage of moisture exceeding, say, 15 per cent, is retained by the corn. The regulation of temperature is shown by the diagrams, Figs. 9 and 10: [Illustration: Fig. 9.] [Illustration: Fig. 10.] The distribution of the heated air in the kiln is rarely as uniform as is supposed, the temperature of the malt on drying floor being very different at different parts. In illustration of this, the following may be taken from a statement by Mr. Stopes of the results of an examination of the temperatures at different parts of a drying floor in a kiln in Norfolk: "A malting steeping 105 qr. every four days has a kiln 75 feet by 36 feet; an average drying area of under 26 feet per qr. The consequent depth of green malt when loaded is over 10 inches. The total area of air inlets is less than 27 feet super. The air outlet exceeds 117 feet, a ratio of 13 to 3. The capacity of head room equals 44,550 feet cube. The area of each tile is 144 inches, with 546 holes, giving an effective air area of some 32 inches. The ratio of non-effective metallic surface to air space is thus 9 to 2." The Casella anemometer gave no indications at several points, and fluctuating up and down draughts were observable at many others, especially at two corners and |
|