Scientific American Supplement, No. 417, December 29, 1883 by Various
page 9 of 98 (09%)
page 9 of 98 (09%)
![]() | ![]() |
|
It will be seen by reference to these results that the percentage of inductive energy intercepted does not increase for different speeds of the reverser in the same rate with different metals, the increase with iron being very slight, while with tin it is comparatively enormous. It was observed that time was an important element to be taken into account while testing the above metals, that is to say, the lines of force took an appreciable time to polarize the particles of the metal placed in their path, but having accomplished this, they passed more freely through it. Now let us go more minutely into the subject by the aid of Plate IV., Figs. 1 and 2. In Fig. 1 let A and B represent two flat spirals, spiral A being connected to a battery with a key in circuit and spiral B connected to a galvanometer; then, on closing the battery circuit, an instantaneous current is induced in spiral B. If a non-magnetic metal plate half an inch thick be placed midway between the spirals, and the experiment repeated, it will be found that the induced current received by B is the same in amount as in the first case. This does not prove, as would at first appear, that the metal plate fails to intercept the inductive radiant energy; and it can scarcely be so, for if the plate is replaced by a coil of wire, it is found that induced currents are set up therein, and therefore inductive radiant energy must have been intercepted. This apparent contradiction may be explained as follows: In Fig. 2 let D represent a source of heat (a vessel of boiling water for instance) and E a sensitive thermometer receiving and measuring the radiant heat. Now, if for instance a plate of vulcanite is interposed, it cuts off and absorbs a part of the radiant heat emitted by D, and thus a fall is produced in the thermometer reading. But the vulcanite, |
|