Popular Science Monthly - Oct, Nov, Dec, 1915 — Volume 86 by Anonymous
page 202 of 485 (41%)
page 202 of 485 (41%)
![]() | ![]() |
|
assumed for the interior of the earth constant conditions. It
is now generally accepted that this is not probable, and that whether it cooled from a gas or coagulated from planetesimals, it became solid first at the center which then would be hottest, and both Becker[3] and A. Holmes[4] assume an initial temperature gradient. If that gradient were greater than the gradient of steady flow the conditions of steady flow would be approached most rapidly at the exterior, the loss of heat and energy would be altogether from within and it is easy to arrange for conditions mathematically in which almost all the loss of energy would come from the very interior, near the center. What will be the effect? A paradoxical one, if the part outside the center is rigid enough to be self-sustaining. The central core will become a gas! [3] Bull. Geol. Soc. Am., Vol. 26, 1915, p. 197, etc. [4] Geological Magazine, March and April, 1913. This is so contrary to our ordinary experience and ideas, in which loss of heat tends to change from gas to fluid and solid, that we must look into it a little to make it sound reasonable. The recent brilliant work of P. W. Bridgman (contrary to the earlier speculations of Tammann) indicates that the effect of increased pressure, at high temperature, makes a substance solid and crystalline. Crowd any atoms close enough together, and no matter how fast they expand or contract under the influence of heat the crystalline atomic forces will get to work when they are crowded within their range, and the closest |
|