The Einstein Theory of Relativity by H.A. Lorentz
page 19 of 24 (79%)
page 19 of 24 (79%)
![]() | ![]() |
|
star from the sun. It is at that point that we think we see the star;
so here is a seeming displacement from the sun, which increases in the measure in which the star is observed closer to the sun. The Einstein theory teaches that the displacement is in inverse proportion to the apparent distance of the star from the centre of the sun, and that for a star just on its edge it will amount to 1'.75 (1.75 seconds). This is approximately the thousandth part of the apparent diameter of the sun. Naturally, the phenomenon can only be observed when there is a total eclipse of the sun; then one can take photographs of neighboring stars and through comparing the plate with a picture of the same part of the heavens taken at a time when the sun was far removed from that point the sought-for movement to one side may become apparent. Thus to put the Einstein theory to the test was the principal aim of the English expeditions sent out to observe the eclipse of May 29, one to Prince's Island, off the coast of Guinea, and the other to Sobral, Brazil. The first-named expedition's observers were Eddington and Cottingham, those of the second, Crommelin and Davidson. The conditions were especially favorable, for a very large number of bright stars were shown on the photographic plate; the observers at Sobral being particularly lucky in having good weather. The total eclipse lasted five minutes, during four of which it was perfectly clear, so that good photographs could be taken. In the report issued regarding the results the following figures, which are the average of the measurements made from the seven plates, are given for the displacements of seven stars: 1''.02, 0''.92, 0''.84, 0''.58, 0''.54, 0''.36, 0''.24, whereas, |
|