The Einstein Theory of Relativity by H.A. Lorentz
page 20 of 24 (83%)
page 20 of 24 (83%)
![]() | ![]() |
|
according to the theory, the displacements should have amounted to:
0''.88, 0''.80, 0''.75, 0''.40, 0''.52, 0''.33, 0''.20. If we consider that, according to the theory the displacements must be in inverse ratio to the distance from the centre of the sun, then we may deduce from each observed displacement how great the sideways movement for a star at the edge of the sun should have been. As the most probable result, therefore, the number 1''.98 was found from all the observations together. As the last of the displacements given above--i.e., 0''.24 is about one-eighth of this, we may say that the influence of the attraction of the sun upon light made itself felt upon the ray at a distance eight times removed from its centre. The displacements calculated according to the theory are, just because of the way in which they are calculated, in inverse proportion to the distance to the centre. Now that the observed deviations also accord with the same rule, it follows that they are surely proportionate with the calculated displacements. The proportion of the first and the last observed sidewise movements is 4.2, and that of the two most extreme of the calculated numbers is 4.4. This result is of importance, because thereby the theory is excluded, or at least made extremely improbable, that the phenomenon of refraction is to be ascribed to, a ring of vapor surrounding the sun for a great distance. Indeed, such a refraction should cause a deviation in the observed direction, and, in order to produce the displacement of one of the stars under observation itself a slight proximity of the vapor ring should be sufficient, but we have every reason to expect that if it were merely a question of a mass of gas around the sun the diminishing effect accompanying a removal |
|