Scientific American Supplement, No. 415, December 15, 1883 by Various
page 30 of 126 (23%)
page 30 of 126 (23%)
|
Next procure a strong piece of linen thread about four feet long; pass
it through the eye of a coarse needle, wax and twist it until it forms a single cord. Pass the needle _upward_ through the hole marked 0, and tie a knot in the end of the thread to prevent its slipping through. The apparatus is now ready for immediate use. It only remains to set it to the size of the oval desired. Suppose it is required to describe an ellipse the longer diameter of which is 8 inches, and the distance between the foci 5 inches. Insert a pin or small tack loosely in the hole between 6 and 7, which is distant 6-½ inches from O. Pass the needle through hole 5, allowing the thread to pass around the tack or pin; draw it tightly and fasten it in the slit or clip at the end. Lay the apparatus on a smooth sheet of paper, place the point of a pencil at E, and keeping the string tight pass it around and describe the curve, just in the same manner as when the two ends of the string are fastened to the paper at the foci. The chief advantage claimed over the usual method is that it may be applied to metal and stone, where it is difficult to attach a string. On drawings it avoids the necessity of perforating the paper with pins. As the pencil point is liable to slip out of the loop formed by the string, it should have a nick cut or filed in one side, like a crochet needle. As the mechanic frequently wants to make an oval having a given width and length, but does not know what the distance between the foci must be to produce this effect, a few directions on this point may be useful: It is a fact well known to mathematicians that if the distance between the foci and the shorter diameter of an ellipse be made the sides of a |
|