Scientific American Supplement, No. 531, March 6, 1886 by Various
page 31 of 142 (21%)
page 31 of 142 (21%)
|
observe in Fig. 1 that the versed sine A E, of the angle A O C,
represents in a general way the distance that the body A will be deflected from the tangent A D toward the center O while describing the arc A C. The same law of deflection is shown, in smaller angles, in Fig. 2. In this figure, also, you observe in each of the angles A O B and A O C that the deflection, from the tangential direction toward the center, of a body moving in the arc A C is represented by the versed sine of the angle. The tangent to the arc at A, from which this deflection is measured, is omitted in this figure to avoid confusion. It is shown sufficiently in Fig. 1. The angles in Fig. 2 are still pretty large angles, being 12° and 24° respectively. These large angles are used for convenience of illustration; but it should be explained that this law does not really hold in them, as is evident, because the arc is longer than the tangent to which it would be connected by a line parallel with the versed sine. The law is absolutely true only when the tangent and arc coincide, and approximately so for exceedingly small angles. [Illustration: Fig. 2] In reality, however, we have only to do with the case in which the arc and the tangent do coincide, and in which the law that the deflection is _equal to_ the versed sine of the angle is absolutely true. Here, in observing this most familiar thing, we are, at a single step, taken to that which is utterly beyond our comprehension. The angles we have to consider disappear, not only from our sight, but even from our conception. As in every other case when we push a physical investigation to its limit, so here also, we find our power of thought transcended, and ourselves in the presence of the infinite. |
|