Scientific American Supplement, No. 531, March 6, 1886 by Various
page 32 of 142 (22%)
page 32 of 142 (22%)
|
We can discuss very small angles. We talk familiarly about the angle which is subtended by 1" of arc. On Fig. 2, a short line is drawn near to the radius O A'. The distance between O A' and this short line is 1° of the arc A' B'. If we divide this distance by 3,600, we get 1" of arc. The upper line of the Table of versed sines given below is the versed sine of 1" of arc. It takes 1,296,000 of these angles to fill a circular space. These are a great many angles, but they do not make a circle. They make a polygon. If the radius of the circumscribed circle of this polygon is 1,296,000 feet, which is nearly 213 geographical miles, each one of its sides will be a straight line, 6.283 feet long. On the surface of the earth, at the equator, each side of this polygon would be one-sixtieth of a geographical mile, or 101.46 feet. On the orbit of the moon, at its mean distance from the earth, each of these straight sides would be about 6,000 feet long. The best we are able to do is to conceive of a polygon having an infinite number of sides, and so an infinite number of angles, the versed sines of which are infinitely small, and having, also, an infinite number of tangential directions, in which the body can successively move. Still, we have not reached the circle. We never can reach the circle. When you swing a sling around your head, and feel the uniform stress exerted on your hand through the cord, you are made aware of an action which is entirely beyond the grasp of our minds and the reach of our analysis. So always in practical operation that law is absolutely true which we observe to be approximated to more and more nearly as we consider smaller and smaller angles, that the versed sine of the angle is the measure of its deflection from the straight line of motion, or the |
|