Book-bot.com - read famous books online for free

An Introductory Course of Quantitative Chemical Analysis - With Explanatory Notes by Henry P. Talbot
page 43 of 272 (15%)
principle, be that of complete neutrality. Expressed in terms of ionic
reactions, it should be the point at which the H^{+} ions from an
acid[Note 1] unite with a corresponding number of OH^{-} ions from a
base to form water molecules, as in the equation

H^{+}, Cl^{-} + Na^{+}, OH^{-} --> Na^{+}, Cl^{-} + (H_{2}O).

It is not usually possible to realize this condition of exact
neutrality, but it is possible to approach it with sufficient
exactness for analytical purposes, since substances are known which,
in solution, undergo a sharp change of color as soon as even a minute
excess of H^{+} or OH^{-} ions are present. Some, as will be seen,
react sharply in the presence of H^{+} ions, and others with OH^{-}
ions. These substances employed as indicators are usually organic
compounds of complex structure and are closely allied to the dyestuffs
in character.

[Note 1: A knowledge on the part of the student of the ionic theory
as applied to aqueous solutions of electrolytes is assumed. A brief
outline of the more important applications of the theory is given in
the Appendix.]


BEHAVIOR OF ORGANIC INDICATORS

The indicators in most common use for acid and alkali titrations are
methyl orange, litmus, and phenolphthalein.

In the following discussion of the principles underlying the behavior
of the indicators as a class, methyl orange and phenolphthalein will
DigitalOcean Referral Badge