An Introductory Course of Quantitative Chemical Analysis - With Explanatory Notes by Henry P. Talbot
page 43 of 272 (15%)
page 43 of 272 (15%)
|
principle, be that of complete neutrality. Expressed in terms of ionic
reactions, it should be the point at which the H^{+} ions from an acid[Note 1] unite with a corresponding number of OH^{-} ions from a base to form water molecules, as in the equation H^{+}, Cl^{-} + Na^{+}, OH^{-} --> Na^{+}, Cl^{-} + (H_{2}O). It is not usually possible to realize this condition of exact neutrality, but it is possible to approach it with sufficient exactness for analytical purposes, since substances are known which, in solution, undergo a sharp change of color as soon as even a minute excess of H^{+} or OH^{-} ions are present. Some, as will be seen, react sharply in the presence of H^{+} ions, and others with OH^{-} ions. These substances employed as indicators are usually organic compounds of complex structure and are closely allied to the dyestuffs in character. [Note 1: A knowledge on the part of the student of the ionic theory as applied to aqueous solutions of electrolytes is assumed. A brief outline of the more important applications of the theory is given in the Appendix.] BEHAVIOR OF ORGANIC INDICATORS The indicators in most common use for acid and alkali titrations are methyl orange, litmus, and phenolphthalein. In the following discussion of the principles underlying the behavior of the indicators as a class, methyl orange and phenolphthalein will |
|