Scientific American Supplement, No. 795, March 28, 1891 by Various
page 90 of 136 (66%)
page 90 of 136 (66%)
![]() | ![]() |
|
in contact with the rim of the burner. This is best seen when the gas
is turned low--with a batswing burner, for instance--turned so low that only a small non-luminous flame is left, the space between burner and flame will appear as great as the flame itself, while, if the gas is mixed with an inert diluent like carbon dioxide, the space can be very much increased. Several theories have been brought forward to explain this phenomenon, but the true one is that the burner abstracts so much heat from the flame at that point that it is unable to burn there, and this can be proved by the fact that where a cold object touches the flame, a dividing space, similar to that noticed between flame and burner, will always be observed, and the colder the object and the more diluted the gas the greater is the observed space. If a cold metal wire or rod is held in a non-luminous flame, it causes an extinction of the gas for some considerable space around itself; but as the temperature of the rod rises, this space becomes smaller and smaller until the rod is heated to redness, and then the flame comes in contact with the rod. In the same way, if the burner from which the gas is issuing be heated to redness, the space between burner and flame disappears. It has already been shown that cooling the flame by an inert diluent reduces the illuminating value, and finally renders it more luminous; and we are now in a position to discuss the points which should be aimed at in the construction of a good gas burner. In the first place, a sensible diminution in light takes place when a metal burner is employed, and the larger the surface and thickness of the metal the worse will be its action on the illuminating power of the flame; but this cooling action is only influencing the bottom of |
|