Scientific American Supplement, No. 795, March 28, 1891 by Various
page 91 of 136 (66%)
page 91 of 136 (66%)
![]() | ![]() |
|
the flame, so that with a small flame the total effect is very great,
and with a very large flame almost _nil_. The first point, therefore, to attend to is that the burner shall be made of a good non-conductor. In the next place, the flow of the gas must be regulated to the burner, as, if you have a pressure higher than that for which the burner is constructed, you at once obtain a roaring flame and a loss of illuminating power, as the too rapid rush of gas from the burner causes a mingling of gas and air and a consequent cooling of the flame. The tap also which regulates the flame is better at a distance from the burner than close to it, as any constriction near the burner causes eddies, which give an unsteady flame. These general principles govern all burners, and we will now take the ordinary forms in detail. In the ordinary flat flame burner, given a good non-conducting material, and a well regulated gas supply, little more can be done, while burning it in the ordinary way, to increase its luminosity; and it is the large surface of flame exposed to the cooling action of the air which causes this form of burner to give the lowest service of any per cubic foot of gas consumed. Much is done, moreover, by faulty fittings and shades, to reduce the already poor light given out, because the light-yielding power of the flame largely depends upon its having a well rounded base and broad, luminous zone; and when a globe with a narrow opening is used with such a flame--as is done in 99 out of 100 cases--the updraught drags the flame out of shape, and seriously impairs its light-giving powers, a trouble which can be got over by having the globe with an opening at the bottom not less than 4 inches in diameter, and having small shoulders fixed to the burner, which draw out the flame and protect the base from the |
|