Book-bot.com - read famous books online for free

Experiments with Alternate Currents of High Potential and High Frequency by Nikola Tesla
page 116 of 127 (91%)
difference of potential between the terminals is raised, the
dielectric breaks down. But with very high frequency impulses there
is no necessity for such breaking down, since any amount of work can
be performed by continually agitating the atoms in the exhausted
vessel, provided the frequency is high enough. It is easy to
reach--even with frequencies obtained from an alternator as here
used--a stage at which the discharge does not pass between two
electrodes in a narrow tube, each of these being connected to one of
the terminals of the coil, but it is difficult to reach a point at
which a luminous discharge would not occur around each electrode.

A thought which naturally presents itself in connection with high
frequency currents, is to make use of their powerful electro-dynamic
inductive action to produce light effects in a sealed glass globe. The
leading-in wire is one of the defects of the present incandescent
lamp, and if no other improvement were made, that imperfection at
least should be done away with. Following this thought, I have carried
on experiments in various directions, of which some were indicated in
my former paper. I may here mention one or two more lines of
experiment which have been followed up.

Many bulbs were constructed as shown in Fig. 32 and Fig. 33.

In Fig. 32 a wide tube T was sealed to a smaller W-shaped tube U, of
phosphorescent glass. In the tube T was placed a coil C of aluminium
wire, the ends of which were provided with small spheres t and t_1 of
aluminium, and reached into the U tube. The tube T was slipped into a
socket containing a primary coil through which usually the discharges
of Leyden jars were directed, and the rarefied gas in the small U tube
was excited to strong luminosity by the high-tension currents induced
DigitalOcean Referral Badge